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Abstract The demand for new therapies has encouraged the
development of faster and cheaper methods of drug design.
Considering the number of potential biological targets for new
drugs, the docking-based virtual screening (DBVS) approach
has occupied a prominent role among modern strategies for
identifying new bioactive substances. Some tools have been
developed to validate docking methodologies and identify
false positives, such as the receiver operating characteristic
(ROC) curve. In this context, a database with 31 molecular
targets called the Our Own Molecular Targets Data Bank
(OOMT) was validated using the root-mean-square deviation
(RMSD) and the area under the ROC curve (AUC) with two
different docking methodologies: AutoDock Vina and DOCK
6. Sixteen molecular targets showed AUC values of >0.8, and
those targets were selected for molecular docking studies. The
drug-likeness properties were then determined for 473
Brazilian natural compounds that were obtained from the
ZINC database. Ninety-six compounds showed similar
drug-likeness property values to the marked drugs (positive
values). These compounds were submitted to DBVS for 16
molecular targets. Our results showed that AutoDock Vina

was more appropriate than DOCK 6 for performing DBVS
experiments. Furthermore, this work suggests that three com-
pounds—ZINC13513540 , Z INC06041137 , and
ZINC1342926—are inhibitors of the three molecular targets
1AGW, 2ZOQ, and 3EYG, respectively, which are associated
with cancer. Finally, since ZINC and the PDB were solely
created to store biomolecule structures, their utilization re-
quires the application of filters to improve the first steps of
the drug development process.

Keywords Structure-based drug design . Docking . Natural
products . Virtual screening

Introduction

Ensuring the availability of new drugs on the market is a big
challenge for the modern pharmaceutical industry. The num-
ber of new drugs approved and released every year has
remained constant, despite a steady increase in investment in
research and development [1]. This situation has encouraged
the development of different strategies for identifying new
lead compounds (Bhits^) [2], as the utilization of biological
assays and methodologies is limited by their high cost [3].
Moreover, further complications arise when the active com-
pound occurs in an organism because of the inherently re-
duced availability of the compound and the presence of many
important metabolites in low quantities, which mean that a
large number of the organisms are needed to extract and iso-
late the compound of interest [4].

Considering the number of potential biological targets for
new drugs, docking-based virtual screening (DBVS) plays a
prominent role among current strategies for identifying prom-
ising bioactive substances. DBVS is a theoretical approach
that enables the identification of lead compounds from the
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three-dimensional structure of the receptor of interest using
docking programs. These docking programs measure the af-
finity of a small molecule (the ligand) for a molecular target to
determine the interaction energy of the resulting complex.
Moreover, starting from the complex between the ligand and
the receptor, visualization software can present the intermo-
lecular interaction that is responsible for molecular recogni-
tion. As a result, DBVS can identify the most promising lead
compounds for biological assays and decrease the costs asso-
ciated with drug development [2, 5].

The root mean square deviation (RMSD) is a statistical
measure that can be used to evaluate the ability of a molecular
docking program to reproduce the ligand conformation ob-
served in the corresponding experimental crystallographic
structure [6]. The RMSD is calculated by superposing the
crystallographic ligand pose on the theoretically determined
ligand pose when redocked, and then calculating the devia-
tions between the positions of the heavy atoms in the crystal-
lographic ligand pose and their positions in the theoretical li-
gand pose. The RMSD can be used to deduce the following: (i)
if the chosen docking methodology can accurately reproduce
the binding conformation; (ii) if the configuration parameters
are suitable for the docking process; and (iii) a reference score
or binding energy for the crystallographic ligand (active). On
the other hand, although RMSD calculations are simple and
are relatively computationally inexpensive, their application to
evaluate the quality of a docking program has limitations. The
first relates to the number of atoms in the ligands. The RMSD
is only practical to use for small molecules (with relatively few
atoms), which poses a problem if we need a method that can be
applied to molecules of various sizes. Furthermore, high devi-
ations can be obtained for groups of ligands that do not partic-
ipate in some common types of intermolecular interactions,
even though the fundamental characteristics of the overall li-
gand–receptor docking interaction are maintained by other in-
teractions [7]. However, the main limitation of DBVS is the
ability of the docking methodology to discriminate true-
positive from false-positive compounds. Some tools have been
developed to validate the docking methodology and identify
false-positive compounds, such as the receiver operating char-
acteristic (ROC) curve and the area under the ROC curve
(AUC) [8]. The ROC curve is a plot of the true-positive rate
against the false-positive rate, and the AUC indicates the prob-
ability of retrieving true-positive results before false-positive
results [9, 10]. In other words, the closer the AUC value is to
1.0, the more likely it is that the methodology will distinguish
true-positive from false-positive compounds. An AUC value
of ≤0.5 implies a methodology that selects true-positive and
false-positive compounds at random.

Inverse virtual screening (IVS) is a screening technique for
molecular targets [11]. This technique can be applied to natu-
ral products, which are generally substances for which there
have been no previous reports of biological activity.

Moreover, many of the drugs currently available on themarket
were obtained from natural sources or were inspired by them
[12]. IVS enables the identification of molecular targets as
well as the prediction of the pharmacological properties and
the potential adverse effects of a natural compound [4]. In this
context, computational methodologies can be used to identify
structural modifications of natural compounds that could im-
prove ligand–receptor molecular recognition and thus lead to
the ligand-optimization process. Lauro and collaborators built
a bank of specific molecular targets for cancer and conducted
an IVS study with natural compounds to identify molecular
targets and natural compounds with favorable interactions [4].
They docked 43 natural compounds into a library of 126 pro-
tein targets, all of which are involved in tumor processes,
using the AutoDock Vina program [13]. In addition to the
IVS test, they developed a statistical approach to eliminate
false-positive compounds. As a result, six compounds with
affinities for nine receptors involved in cancer were described
as hits. In a previous study, our group used IVS to select
molecular targets for natural compounds obtained from
cerrado, which is a typical biome in Brazil [14]. The study
included docking andmolecular dynamics (MD) simulation to
evaluate the methodology. However, the MD simulation has a
high computational cost, which limits its use to a small set of
compounds. These previous studies motivated our group to
develop the Our Own Molecular Targets Data Bank
(OOMT) [15]. The OOMT contains various receptors present
in the Protein Data Bank (PDB) [16], including those related
to the physiopathology of cancer and malaria. The main ob-
jective of the OOMT is facilitate DBVS on specific molecular
targets for which biological assays can also be performed.

The ZINC database is a free database with 35 million com-
mercially available compounds. Since it was first released ten
years ago, ZINC has increased in size more than tenfold.
ZINC is maintained by the Shoichet Laboratory in the
Department of Pharmaceutical Chemistry of the University
of California, San Francisco (UCSF). ZINC allows searches
to be performed by ligand structure, biological activity, and
physical properties, as well as by seller [17].

Because of the availability of various databases that pro-
vide thousands of compounds for high-throughput screening
(HTS) and virtual screening (VS), a need to be able to select
the most promising compounds with suitable physicochemi-
cal characteristics to become drugs has emerged. Among var-
ious filters that can be applied, drug-likeness can be employed
to evaluate whether molecules in the ZINC database have
similar physicochemical characteristics or similar functional
groups to drugs available in the marketplace. This evaluation
circumvents the need for screening tests for potentially toxic
compounds or for those with physical properties that will im-
pair bioavailability [5, 18].

In the study reported in the present paper, in silico methods
were used to identify lead compounds with potential
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biological activity. Initially, our goals were to determine which
methodology is more suitable for DBVS experiments to eval-
uate the performance of AutoDock Vina and DOCK 6 using
RMSD and AUC curve calculations. Then the OOMT was
used to perform virtual-screening studies to infer the biologi-
cal activities of natural compounds from Brazilian flora that
are deposited in the ZINC database.

Methodology

Evaluation of molecular docking methodologies

For each OOMT molecular target (Table 1), five active com-
pounds were selected from the ChEMBL [19, 20]. Then 50

decoys were generated from the most active compound for
each molecular target using the DUD-E platform [21]. Next,
the active and decoy compounds were submitted to molecular
docking in the AutoDock Vina [13, 22] and DOCK 6 [23]
programs. However, two different methodologies were used
by DOCK 6: the grid score [24] and the generalized Born
(AMBER GB-SA) solvation model [23, 25, 26]. The output
of the grid score was used as the input for the GB-SA calcu-
lation, which performed rescoring. The details of the
AutoDock Vina and DOCK 6 parameters are provided in
Table S1 of the BElectronic supplementary material^ (ESM).
The ROC curve and the area under the ROC curve (AUC)
were built for each methodology [9] using a trial version of
IBM SPSS Statistics for Windows [27]. In addition, the meth-
odologies were evaluated by redocking, which involves

Table 1 AUC and RMSD values
calculated for the OOMT proteins AUC RMSD

OOMT database AutoDock Vina Grid score GB-SA score AutoDock Vina DOCK6 grid score

1AGW 0.80 0.90 0.91 1.42 0.53

1DDX 0.59 0.26 0.32 1.58 1.04

1GKC 0.60 0.35 0.60 0.55 0.27

1GMY 0.33 0.34 0.27 1.58 0.84

1LD8 0.48 0.44 0.34 0.25 0.44

1LF3 0.73 0.71 0.73 0.41 0.18

1 W22 0.27 0.19 0.48 7.85 1.21

1W6M 0.00 0.22 0.48 0.68 0.30

1Z57 0.58 0.68 0.59 0.29 0.29

1ZZ1 0.92 0.94 0.78 0.87 1.04

2HYY 0.59 0.63 0.50 0.27 0.07

2QHN 0.49 0.36 0.24 1.22 0.55

2VV9 0.59 0.70 0.60 13.49 1.02

2 W15 0.63 0.85 0.52 1.19 0.98

2ZOQ 0.89 0.29 0.26 0.98 0.95

3BPF 0.71 0.94 0.78 7.88 1.96

3BZ3 0.65 0.63 0.16 5.97 1.18

3C4C 0.92 0.41 0.39 1.20 0.16

3DV3 0.15 0.54 0.24 1.21 0.18

3EDQ 0.57 0.92 0.73 1.45 1.90

3ENE 0.79 0.58 0.44 2.99 1.40

3EYG 0.84 0.84 0.37 1.37 0.63

3FAP 0.46 0.68 0.64 0.21 0.05

3FL5 1.00 0.63 0.43 1.61 0.53

3G0E 0.92 0.46 0.55 0.82 0.33

3HIG 0.87 0.61 0.71 0.74 0.50

3JYA 0.80 0.43 0.48 0.90 0.10

4AGN 0.08 0.23 0.25 1.02 0.18

4EY7 0.92 0.78 0.91 1.92 1.63

4IAR 0.64 0.92 0.60 0.31 0.25

4 J56 0.10 0.02 0.04 0.11 12.38
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calculating the RMSD between the crystallographic ligand
structure and the best docked ligand pose, using DOCK 6
[23, 28, 29], the academic version of the DS Visualizer 4.1
software [30], and AutoDock Vina.

Docking-based virtual screening (DBVS)

The Brazilian natural-compound database was obtained from
the ZINC platform [17, 31] and consisted of 473 compounds.
The fragment-based drug-likeness property was calculated for
each compound using the OSIRIS DataWarrior 4.2.2 [32]
program to select the compounds with the best pharmacoki-
netic properties [18]. The resultant compounds were submit-
ted to MarvinSketch 15.5.4.0 [33] to correct the protonation
states of the molecules at pH 7.4. The geometries of the com-
pounds were optimized using Parametric Method 7 (PM7)
[34] in MOPAC2012 [35]. Only the molecular targets that
had an AUC ROC value of ≥0.8 were submitted to screening
tests [36, 37]. The AutoDock Vina 1.0.2 [13, 22] software and
the DOCK 6 [23] program were used for docking simulation.
Meanwhile, the molecular targets were prepared from the
OOMT (Table. 1). Initially, the H++ program [38–40] was
used to adjust the ionizable groups to the appropriate proton-
ation state at pH 7.4 by adding hydrogen atoms where appro-
priate, except for 3BPF and 1LF3, which were adjusted to
pH 4.0 (lysosomal environment of Plasmodium falciparum).
After that, the crystallographic water molecules that formed a
bridge structure between the ligand and the protein were
added using DS Visualizer 4.1. For AutoDock Vina, the polar
hydrogens and Gasteiger charges were adjusted using the
AutoDockTools program [41]; for DOCK 6, the hydrogens
and Gasteiger charges of the proteins and ligands were added
using the Chimera software [42]. The Gasteiger charges are
the partial charges of the atoms in molecules, which were
calculated using an electrostatic model that considers the par-
tial equalization of orbital electronegativities (PEOE). Atomic
charges are useful for predicting the physical or chemical
properties of molecules [43, 44]. AutoDock Vina calculations
are based on a pseudo-randomly generated algorithm, so each
calculation was performed in quintuplicate and the binding
energies were obtained from the average with an exhaustive-
ness of 20. Finally, the compounds were submitted to the
DBVS methodology using the OOMT database (see
Table 1) [15].

Results and discussion

Evaluation of molecular docking methodologies

Initially, the AutoDock Vina and DOCK 6 programs were
selected to carry out DBVS. AutoDock Vina performed sto-
chastic optimization to search for the binding conformation.

Then the Metropolis criterion was used to decide whether to
accept this optimization. In addition, AutoDock Vina uses
both knowledge-based potentials and empirical scoring func-
tions [13, 22], so AutoDock Vina combines speed and accu-
racy, which is ideal for DBVS experiments. In contrast, the
DOCK 6 program uses a systematic search based on the in-
cremental construction method. In this method, the ligand is
divided into rigid and flexible fragments. Because the rigid
cores are set, they are docked into the active site and the
flexible fragments are incrementally added [23, 45]. Unlike
AutoDock Vina, DOCK 6 is a force-field-based method. In
our studies, the grid-based score [24] and GB-SA [23] were
used. The grid-based score computes the contact and energy
scores and identifies if a ligand atom sterically overlaps with a
receptor atom. In addition, GB-SA requires the output of the
grid-based score, which includes a solvation model in the
molecular-docking calculation. This output enables the elec-
trostatic, van der Waals, and hydrophobic contributions to the
free energy of the protein–ligand complex to be estimated.
The GB-SA methodology is typically used as a second-step
DBVS assay because of its computational cost [23].

In other words, two docking programs were used, but the
performance of each of three different methodologies was
evaluated in our studies. As a result, the area under the ROC
curve (AUC) and the RMSDwere calculated for 31 molecular
targets for each methodology, which yielded 93 ROC curves
and 62 RMSD calculations in total. Table 1 shows the AUC
and RMSD values for each molecular target in the OOMT for
AutoDock Vina and DOCK 6 (score functions). AUC values
larger than 0.5 designate that the method was able to distin-
guish between true-positive and false-positive compounds.
Among the 31 curves constructed, the success rates were
71% (22), 55% (17), and 48% (15) for the AutoDock Vina
program, grid-based score, and GB-SA, respectively.
However, to select molecular targets for which the methodol-
ogies could separate a true-positive from a false-positive com-
pound, DBVS assays were applied to molecular targets with
AUC values >0.8. The complete lists of docked molecular
targets and compounds are available in Tables 2 and 3 in the
ESM.AlthoughGB-SA is a robust method because it includes
solvation and rescores the grid-based score, it was less effi-
cient at distinguishing true-positive from false-positive com-
pounds compared to other methods. In addition, it was com-
putationally costly. Thus, docking simulations of natural com-
pounds were not performed using the GB-SA methodology.
AutoDock Vina showed the best performance in this case.

In general, the docking methodologies were evaluated by
calculating the RMSD. The ligand was removed from the
binding site and docked again. Overlaying the crystallograph-
ic on the theoretically docked structure enabled the RMSD to
be calculated. RMSD values of <2.0 Å indicate that the meth-
odology is suitable for docking [7]. In other words, the RMSD
indicates the ability to reproduce the binding conformation of

 111 Page 4 of 9 J Mol Model  (2017) 23:111 



the crystallographic ligand–protein complex. According to
Table 1, our results indicate that AutoDock Vina and the
grid-based score method of the DOCK 6 program were gen-
erally able to reproduce the binding conformations of crystal-
lographic ligand–target complexes for which the molecular

target is in the OOMT. Moreover, AutoDock Vina and the
grid-based score were able to efficiently redock 83% (26)
and 97% (30), respectively, of the ligands in cases where the
RMSD value was <2.0. Thus, the grid-based score was more
efficient for calculating the RMSD. In addition, Tables 2 and 3

Fig. 1 a–f ROC curves and AUC values for selected molecular targets
from OOMT (a 1AGW, c 2ZOQ, and e 3EYG). b (for 1AGW), d (for
2ZOQ), and f (for 3EYG) show overlays of the crystallographic ligands

(yellow) on the redocked structures (blue), as calculated using the
AutoDock Vina program
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Fig. 2 a–f DBVS-selected results for the docking of natural compounds
into targets from the OOMT. The complexes 1AGW–ZINC 69482570,
2ZOQ–ZINC06041137, and 3EYG–ZINC1342926 are shown in a, c,
and e, respectively, whereas the 2D intermolecular interaction diagrams

are shown in b, d, and f. Van der Waals and electrostatics interactions are
shown in green and pink, respectively, and the dashed lines represent
hydrogen bonds
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in the ESM show the binding energy values obtained with the
AutoDock Vina and DOCK 6 programs, respectively. To help
visualize the results of the study, we also present in Fig. 1 the
molecular targets with the lowest binding energy obtained
upon re-docking 1AGW, 2ZOQ, and 3EYG (whose AUC
values were 0.8, 0.9, and 0.8, respectively) using AutoDock
Vina. Figure 1 also shows the redocking results and the re-
spective RMSD values for the crystallographic ligands when
they bind to the 1AGW, 2ZOQ, and 3EYG receptors.

Because collections of compounds are generally huge da-
tabases, it is impractical to apply the DBVS process to all of
them in a rational drug design approach. Thus, the use of
filters is recommended to improve the success rate [5]. In this
context, the fragment-based drug-likeness [32] was used as a
f i l ter with the 473 compounds from ZINC. The
fragment-based drug-likeness methodology scores ligand
fragments from 15,000 commercial compounds. A positive
value indicates that the compound has similar functional
groups to most of the available drugs on the market. In gen-
eral, most commercial drugs have a drug-likeness value of
close to 2. As a result, 96 compounds showed a positive
fragment-based drug-likeness, and those compounds were
docked against ten and six receptors using AutoDock Vina
and DOCK 6 (grid-based score), respectively. The drug-
likeness results for the fragments are provided in Table 2,
and the energy values obtained using DBVS are shown in
Tables 3 and 4 of the ESM.

Because of the large amount of data, the molecular targets
with the lowest redocking binding energies, which were
1AGW, 2ZOQ, and 3EYG [46–48] (with binding energies of
−7.7, −7.1, and −7.4 kcal/mol, respectively), and the com-
pounds ZINC13513540, ZINC06041137, and ZINC1342926
(with drug-likeness values of 0.35, 0.81, and 0.75, respectively)
were selected to illustrate the DBVS experiment. All of them
were obtained from the AutoDock Vina results, which indicat-
ed that the 1AGW–ZINC69482570, 2ZOQ–ZINC06041137,
and 3EYG–ZINC1342926 complexes were formed with bind-
ing energies of −9.6, −9.9, and −9.5 kcal/mol, respectively
(Fig. 2a, c, d). These results suggest that these ligands could
be more active than the corresponding crystallographic ligands.
These molecular targets are associated with cancer, particularly
hematopoietic malignancies and tumor angiogenesis.

The intermolecular interactions responsible for molecular
recognition are shown in Fig. 2b, d, f as 2D diagrams. As
observed, there are electrostatic interactions with Leu29,
Gly30, Glu31, Lys59, Glu107, Try108, Ala109, Glu116,
Asn173, Ala185, and Asp186 in the complex 1AGW–
ZINC69482570. In addition, van der Waals interactions occur
with Val37, Ala57, Gly112, Asn113, Arg172, and Leu175,
and two hydrogen bonds form with Lys59 and Ala109
(Fig. 1b). Similarly, the overall intermolecular interaction be-
tween 2ZOQ and ZINC06041137 was observed to involve
electrostatic interactions with Ile26, Glu28, Tyr31, Val34,

Lys49, Arg62, Thr63, Glu66, Gln100, Asp101, Asp106,
Lys109, Ser148, Asn149, Vys161, Asp162, and Gly164 as
well as van der Waals interactions with Ala47, Met103 and
Leu151 (Fig. 2d). Additionally, Fig. 2d highlights a hydrogen
bond between a water molecule and ZINC06041137.
Moreover, a sodium ion was removed from the binding site
of 2ZOQ. This ion is an artifact that was used in the crystal-
lization process as a buffer. In general, docking protocols sug-
gest the removal of any ion that does not interact with the
ligand [49]. Finally, Fig. 1f shows the interactions of the mo-
lecular target 3EYG with ZINC13462926. Here, electrostatic
interactions occur with Leu17, Glu19, Leu95, Lys101,
Glu102, Arg143, Asn144, and Asp157, and van der Waals
interactions occur with Gly18, Val25, Ala42, Phe94, Gly98,
Ser99, Leu146, and Gly156.

Finally, our results show that the use of a huge database to
search for new lead compounds should be performed with a
criterion. The main problem with DBVS is the selection of
false-positive compounds, which leads to source loss in bio-
logical assay experiments. Thus, our results highlight new hit
compounds and suitable molecular targets among 473 ligands
and 31 molecular targets, thus prompting a lead-compound
optimization process in subsequent steps and increasing the
chances of drug development success. Moreover, if the com-
putational cost is considered, AutoDock Vina is faster than the
grid-based score implemented in DOCK 6. This advantage
motivated our group to develop the Octopus software [50,
51], an automated workflow management tool that is suffi-
ciently scalable to allow high-throughput virtual screening
(vHTS) and integrates MOPAC2016, AutoDock tools, and
AutoDock Vina. Octopus can prepare the ligands using the
PM7 method after adding Gasteiger charges and before they
are automatically docked into OOMTmolecular targets with a
usability interface. In addition, Octopus can check the ligand
structure for the presence of an unpaired electron. These char-
acteristics make DBVS faster and more accurate.

Conclusion

In general, natural compounds are difficult to obtain and re-
quire a large quantity of source material, so their full biolog-
ical activities are often underestimated. Furthermore, unlike
synthetic compound collections, they have wide structural di-
versity. Thus, many experimental techniques are required to
determine the most suitable biological activity of each natural
compound. In this context, new technologies that can search
for the most promising candidates in the chemical space of
natural compounds should be evaluated to check whether they
could be useful in rational drug design.

Generally, the initial (and sometimes only) evaluation of a
docking methodology is achieved by calculating the RMSD.
Our results were improved by calculating the AUC, which

J Mol Model  (2017) 23:111 Page 7 of 9  111 



increased the accuracy of the results. The AUC is a statistical
methodology used to discriminate between false- and true-
positive results of a test. It is widely used in various subjects,
including drug development. When applied to DBVS, the
AUC enables the methodology’s ability to recover active com-
pounds in preference to inactive compounds from a collection
of ligands to be assessed [8]. The AUC can be applied to
evaluate the accuracy of a test and to compare methods on
this basis. An AUC value of close to 1.0 indicates that a test
is good at distinguishing true-positive results from false-
positive results. If the AUC value is equal to 0.5, the test
returns true-positive and false-positive results at random. In
this study, the AUC was calculated for OOMT proteins, and
its value was used to validate three docking methodologies
using two software programs. Our findings were observed to
be consistent with previous docking studies in that structure-
dependent evaluation was found to be necessary [11].

DBVS validation methodologies are becoming increasing-
ly popular, and performing VS tests without applying these
tools reduces the reliability of the study. After validating the
molecular docking method using the AUC and RMSD, the
reliability of the DBVS test enabled us to identify compounds
that showed smaller binding energies than those for the crys-
tallographic ligand of each molecular target, and the com-
pounds selected could then be examined in biological assays.
Our results suggest that the AutoDock Vina program is more
appropriate for performing DBVS experiments, and our group
also uses Octopus to make high-throughput DBVS more fea-
sible. Finally, experimental assays of the selected hits are in
progress.
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